Hyaluronic acid reagent functional chitosan-PEI conjugate with AQP2-siRNA suppressed endometriotic lesion formation

نویسندگان

  • Meng-Dan Zhao
  • Jin-Lin Cheng
  • Jing-Jing Yan
  • Feng-Ying Chen
  • Jian-Zhong Sheng
  • Dong-Li Sun
  • Jian Chen
  • Jing Miao
  • Run-Ju Zhang
  • Cai-Hong Zheng
  • He-Feng Huang
چکیده

To identify a new drug candidate for treating endometriosis which has fewer side effects, a new polymeric nanoparticle gene delivery system consisting of polyethylenimine-grafted chitosan oligosaccharide (CSO-PEI) with hyaluronic acid (HA) and small interfering RNA (siRNA) was designed. There was no obvious difference in sizes observed between (CSO-PEI/siRNA)HA and CSO-PEI/siRNA, but the fluorescence accumulation in the endometriotic lesion was more significant for (CSO-PEI/siRNA)HA compared with CSO-PEI/siRNA due to the specific binding of HA to CD44. In addition, the (CSO-PEI/siRNA)HA nanoparticle gene therapy significantly decreased the endometriotic lesion sizes with atrophy and degeneration of the ectopic endometrium. The epithelial cells of ectopic endometrium from rat models of endometriosis showed a significantly lower CD44 expression than control after treatment with (CSO-PEI/siRNA)HA. Furthermore, observation under an electron microscope showed no obvious toxic effect on the reproductive organs. Therefore, (CSO-PEI/siRNA)HA gene delivery system can be used as an effective method for the treatment of endometriosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyaluronic acid-polyethyleneimine conjugate for target specific intracellular delivery of siRNA.

A novel target specific small interfering RNA (siRNA) delivery system was successfully developed using polyethyleneimine (PEI)-hyaluronic acid (HA) conjugate. Anti-PGL3-Luc siRNA was used as a model system suppressing the PGL3-Luc gene expression. The siRNA/PEI-HA complex with an average size of ca. 21 nm appeared to be formed by electrostatic interaction between the negatively charged siRNA an...

متن کامل

Rationale design of polymeric siRNA delivery systems

Regulation of gene expression using small interfering RNA (siRNA) is a promising strategy for research and treatment of numerous diseases. However, siRNA cannot easily cross the cell membrane due to its inherent instability, large molecular weight and anionic nature. For this reason, a carrier that protects, delivers and unloads siRNA is required for successful gene silencing. The goal of this ...

متن کامل

siRNA-loaded selenium nanoparticle modified with hyaluronic acid for enhanced hepatocellular carcinoma therapy

Background Small interfering RNA (siRNA) as a new therapeutic modality holds promise for cancer treatment. However, the traditional viral carriers are prone to immunogenicity and risk of insertional mutagenesis. Methods In order to provide a tumor-targeted delivery carrier of siRNA in cancer therapy, the hyaluronic acid (HA)-selenium (Se)-polyethylenimine (PEI) nanoparticle (NP) was fabricate...

متن کامل

Transplanting P75-Suppressed Bone Marrow Stromal Cells Promotes Functional Behavior in a Rat Model of Spinal Cord Injury

Background: Bone marrow stromal cells (BMSC) have been successfully employed for movement deficit recovery in spinal cord injury (SCI) rat models. One of the unsettled problems in cell transplantation is the relative high proportion of cell death, specifically after neural differentiation. According to our previous studies, p75 receptor, known as the death receptor, is only expressed in BMSC in...

متن کامل

Polymer-based gene delivery system fabricated with the participation of a polyanion

A polymer-based gene delivery system, denoted as “DNA/polycation/polyanion”, is designed based on the concept of polyelectrolyte multilayer fabrication by the layer-by-layer polyelectrolyte self-assembly technology. The comparisons of the physicochemical properties between ‘core’ DNA/branched polyethylenimine (PEI) and DNA/chitosan complexes suggest that DNA/PEI complexes form as colloidally st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016